Python源码示例:torch.roll()

示例1
def p2o(psf, shape):
    '''
    # psf: NxCxhxw
    # shape: [H,W]
    # otf: NxCxHxWx2
    '''
    otf = torch.zeros(psf.shape[:-2] + shape).type_as(psf)
    otf[...,:psf.shape[2],:psf.shape[3]].copy_(psf)
    for axis, axis_size in enumerate(psf.shape[2:]):
        otf = torch.roll(otf, -int(axis_size / 2), dims=axis+2)
    otf = torch.rfft(otf, 2, onesided=False)
    n_ops = torch.sum(torch.tensor(psf.shape).type_as(psf) * torch.log2(torch.tensor(psf.shape).type_as(psf)))
    otf[...,1][torch.abs(otf[...,1])<n_ops*2.22e-16] = torch.tensor(0).type_as(psf)
    return otf



# otf2psf: not sure where I got this one from. Maybe translated from Octave source code or whatever. It's just math. 
示例2
def p2o(psf, shape):
    '''
    Args:
        psf: NxCxhxw
        shape: [H,W]

    Returns:
        otf: NxCxHxWx2
    '''
    otf = torch.zeros(psf.shape[:-2] + shape).type_as(psf)
    otf[...,:psf.shape[2],:psf.shape[3]].copy_(psf)
    for axis, axis_size in enumerate(psf.shape[2:]):
        otf = torch.roll(otf, -int(axis_size / 2), dims=axis+2)
    otf = torch.rfft(otf, 2, onesided=False)
    n_ops = torch.sum(torch.tensor(psf.shape).type_as(psf) * torch.log2(torch.tensor(psf.shape).type_as(psf)))
    otf[...,1][torch.abs(otf[...,1])<n_ops*2.22e-16] = torch.tensor(0).type_as(psf)
    return otf 
示例3
def test_roll(workers):
    bob, alice, james = (workers["bob"], workers["alice"], workers["james"])
    t = torch.tensor([[1, 2, 3], [4, 5, 6]])
    x = t.share(bob, alice, crypto_provider=james)

    res1 = torch.roll(x, 2)
    res2 = torch.roll(x, 2, dims=1)
    res3 = torch.roll(x, (1, 2), dims=(0, 1))

    assert (res1.get() == torch.roll(t, 2)).all()
    assert (res2.get() == torch.roll(t, 2, dims=1)).all()
    assert (res3.get() == torch.roll(t, (1, 2), dims=(0, 1))).all()

    # With MultiPointerTensor
    shifts = torch.tensor(1).send(alice, bob)
    res = torch.roll(x, shifts)

    shifts1 = torch.tensor(1).send(alice, bob)
    shifts2 = torch.tensor(2).send(alice, bob)
    res2 = torch.roll(x, (shifts1, shifts2), dims=(0, 1))

    assert (res.get() == torch.roll(t, 1)).all()
    assert (res2.get() == torch.roll(t, (1, 2), dims=(0, 1))).all() 
示例4
def calculate_mask(self, inp):
        # inp is batch_size x self.input_size where batch_size is num_processes*num_agents
        
        pos = inp[:, self.pos_index:self.pos_index+2]
        bsz = inp.size(0)//self.num_agents
        mask = torch.full(size=(bsz,self.num_agents,self.num_agents),fill_value=0,dtype=torch.uint8)
        
        if self.mask_dist is not None and self.mask_dist > 0: 
            for i in range(1,self.num_agents):
                shifted = torch.roll(pos,-bsz*i,0)
                dists = torch.norm(pos-shifted,dim=1)
                restrict = dists > self.mask_dist
                for x in range(self.num_agents):
                    mask[:,x,(x+i)%self.num_agents].copy_(restrict[bsz*x:bsz*(x+1)])
        
        elif self.mask_dist is not None and self.mask_dist == -10:
           if self.dropout_mask is None or bsz!=self.dropout_mask.shape[0] or np.random.random_sample() < 0.1: # sample new dropout mask
               temp = torch.rand(mask.size()) > 0.85
               temp.diagonal(dim1=1,dim2=2).fill_(0)
               self.dropout_mask = (temp+temp.transpose(1,2))!=0
           mask.copy_(self.dropout_mask)

        return mask 
示例5
def otf2psf(otf, outsize=None):
    insize = np.array(otf.shape)
    psf = np.fft.ifftn(otf, axes=(0, 1))
    for axis, axis_size in enumerate(insize):
        psf = np.roll(psf, np.floor(axis_size / 2).astype(int), axis=axis)
    if type(outsize) != type(None):
        insize = np.array(otf.shape)
        outsize = np.array(outsize)
        n = max(np.size(outsize), np.size(insize))
        # outsize = postpad(outsize(:), n, 1);
        # insize = postpad(insize(:) , n, 1);
        colvec_out = outsize.flatten().reshape((np.size(outsize), 1))
        colvec_in = insize.flatten().reshape((np.size(insize), 1))
        outsize = np.pad(colvec_out, ((0, max(0, n - np.size(colvec_out))), (0, 0)), mode="constant")
        insize = np.pad(colvec_in, ((0, max(0, n - np.size(colvec_in))), (0, 0)), mode="constant")

        pad = (insize - outsize) / 2
        if np.any(pad < 0):
            print("otf2psf error: OUTSIZE must be smaller than or equal than OTF size")
        prepad = np.floor(pad)
        postpad = np.ceil(pad)
        dims_start = prepad.astype(int)
        dims_end = (insize - postpad).astype(int)
        for i in range(len(dims_start.shape)):
            psf = np.take(psf, range(dims_start[i][0], dims_end[i][0]), axis=i)
    n_ops = np.sum(otf.size * np.log2(otf.shape))
    psf = np.real_if_close(psf, tol=n_ops)
    return psf


# psf2otf copied/modified from https://github.com/aboucaud/pypher/blob/master/pypher/pypher.py 
示例6
def __getitem__(self, index):
        item = self.dataset[index]
        return torch.roll(item, self.shifts) 
示例7
def test_roll(workers):
    x = torch.tensor([1.0, 2.0, 3, 4, 5])
    expected = torch.roll(x, -1)

    index = torch.tensor([-1.0])
    result = torch.roll(x, index)

    assert (result == expected).all() 
示例8
def __getitem__(self, index):
        item = self.dataset[index]
        return torch.roll(item, self.shifts) 
示例9
def psf2otf(psf, shape=None):
    """
    Convert point-spread function to optical transfer function.
    Compute the Fast Fourier Transform (FFT) of the point-spread
    function (PSF) array and creates the optical transfer function (OTF)
    array that is not influenced by the PSF off-centering.
    By default, the OTF array is the same size as the PSF array.
    To ensure that the OTF is not altered due to PSF off-centering, PSF2OTF
    post-pads the PSF array (down or to the right) with zeros to match
    dimensions specified in OUTSIZE, then circularly shifts the values of
    the PSF array up (or to the left) until the central pixel reaches (1,1)
    position.
    Parameters
    ----------
    psf : `numpy.ndarray`
        PSF array
    shape : int
        Output shape of the OTF array
    Returns
    -------
    otf : `numpy.ndarray`
        OTF array
    Notes
    -----
    Adapted from MATLAB psf2otf function
    """
    if type(shape) == type(None):
        shape = psf.shape
    shape = np.array(shape)
    if np.all(psf == 0):
        # return np.zeros_like(psf)
        return np.zeros(shape)
    if len(psf.shape) == 1:
        psf = psf.reshape((1, psf.shape[0]))
    inshape = psf.shape
    psf = zero_pad(psf, shape, position='corner')
    for axis, axis_size in enumerate(inshape):
        psf = np.roll(psf, -int(axis_size / 2), axis=axis)
    # Compute the OTF
    otf = np.fft.fft2(psf, axes=(0, 1))
    # Estimate the rough number of operations involved in the FFT
    # and discard the PSF imaginary part if within roundoff error
    # roundoff error  = machine epsilon = sys.float_info.epsilon
    # or np.finfo().eps
    n_ops = np.sum(psf.size * np.log2(psf.shape))
    otf = np.real_if_close(otf, tol=n_ops)
    return otf 
示例10
def psf2otf(psf, shape=None):
    """
    Convert point-spread function to optical transfer function.
    Compute the Fast Fourier Transform (FFT) of the point-spread
    function (PSF) array and creates the optical transfer function (OTF)
    array that is not influenced by the PSF off-centering.
    By default, the OTF array is the same size as the PSF array.
    To ensure that the OTF is not altered due to PSF off-centering, PSF2OTF
    post-pads the PSF array (down or to the right) with zeros to match
    dimensions specified in OUTSIZE, then circularly shifts the values of
    the PSF array up (or to the left) until the central pixel reaches (1,1)
    position.
    Parameters
    ----------
    psf : `numpy.ndarray`
        PSF array
    shape : int
        Output shape of the OTF array
    Returns
    -------
    otf : `numpy.ndarray`
        OTF array
    Notes
    -----
    Adapted from MATLAB psf2otf function
    """
    if type(shape) == type(None):
        shape = psf.shape
    shape = np.array(shape)
    if np.all(psf == 0):
        # return np.zeros_like(psf)
        return np.zeros(shape)
    if len(psf.shape) == 1:
        psf = psf.reshape((1, psf.shape[0]))
    inshape = psf.shape
    psf = zero_pad(psf, shape, position='corner')
    for axis, axis_size in enumerate(inshape):
        psf = np.roll(psf, -int(axis_size / 2), axis=axis)
    # Compute the OTF
    otf = np.fft.fft2(psf, axes=(0, 1))
    # Estimate the rough number of operations involved in the FFT
    # and discard the PSF imaginary part if within roundoff error
    # roundoff error  = machine epsilon = sys.float_info.epsilon
    # or np.finfo().eps
    n_ops = np.sum(psf.size * np.log2(psf.shape))
    otf = np.real_if_close(otf, tol=n_ops)
    return otf 
示例11
def maxpool_deriv(x_sh):
    """ Compute derivative of MaxPool

    Args:
        x_sh (AdditiveSharingTensor): the private tensor on which the op applies

    Returns:
        an AdditiveSharingTensor of the same shape as x_sh full of zeros except for
        a 1 at the position of the max value
    """
    assert (
        x_sh.dtype != "custom"
    ), "`custom` dtype shares are unsupported in SecureNN, use dtype = `long` or `int` instead"

    workers = x_sh.locations
    crypto_provider = x_sh.crypto_provider
    L = x_sh.field
    dtype = get_dtype(L)
    torch_dtype = get_torch_dtype(L)

    n1, n2 = x_sh.shape
    n = n1 * n2
    assert L % n == 0
    x_sh = x_sh.view(-1)

    # Common Randomness
    U_sh = _shares_of_zero(n, L, dtype, crypto_provider, *workers)

    r = _random_common_value(L, *workers)

    # 1)
    _, ind_max_sh = maxpool(x_sh)

    # 2)
    j = sy.MultiPointerTensor(
        children=[torch.tensor([int(i == 0)]).send(w, **no_wrap) for i, w in enumerate(workers)]
    )
    k_sh = ind_max_sh + j * r

    # 3)
    t = k_sh.get()
    k = t % n
    E_k = torch.zeros(n, dtype=torch_dtype)
    E_k[k] = 1
    E_sh = E_k.share(*workers, field=L, dtype=dtype, **no_wrap)

    # 4)
    g = r % n
    D_sh = torch.roll(E_sh, -g)

    maxpool_d_sh = D_sh + U_sh
    return maxpool_d_sh.view(n1, n2) 
示例12
def fog_creator(fog_vars, bsize=1, mapsize=256, wibbledecay=1.75):
    assert (mapsize & (mapsize - 1) == 0)
    maparray = torch.from_numpy(np.empty((bsize, mapsize, mapsize), dtype=np.float32)).cuda()
    maparray[:, 0, 0] = 0
    stepsize = mapsize
    wibble = 100
    
    var_num = 0
    
    def wibbledmean(array, var_num):
        result = array / 4. + fog_vars[var_num] * 2 * wibble - wibble
        return result
    
    def fillsquares(var_num):
        """For each square of points stepsize apart,
           calculate middle value as mean of points + wibble"""
        cornerref = maparray[:, 0:mapsize:stepsize, 0:mapsize:stepsize]
        squareaccum = cornerref + torch.roll(cornerref, -1, 1)
        squareaccum = squareaccum + torch.roll(squareaccum, -1, 2)
        maparray[:, stepsize // 2:mapsize:stepsize,
        stepsize // 2:mapsize:stepsize] = wibbledmean(squareaccum, var_num)
        return var_num + 1

    def filldiamonds(var_num):
        """For each diamond of points stepsize apart,
           calculate middle value as mean of points + wibble"""
        mapsize = maparray.size(1)
        drgrid = maparray[:, stepsize // 2:mapsize:stepsize, stepsize // 2:mapsize:stepsize]
        ulgrid = maparray[:, 0:mapsize:stepsize, 0:mapsize:stepsize]
        ldrsum = drgrid + torch.roll(drgrid, 2, 1)
        lulsum = ulgrid + torch.roll(ulgrid, -1, 2)
        ltsum = ldrsum + lulsum
        maparray[:, 0:mapsize:stepsize, stepsize // 2:mapsize:stepsize] = wibbledmean(ltsum, var_num)
        var_num += 1
        tdrsum = drgrid + torch.roll(drgrid, 2, 2)
        tulsum = ulgrid + torch.roll(ulgrid, -1, 1)
        ttsum = tdrsum + tulsum
        maparray[:, stepsize // 2:mapsize:stepsize, 0:mapsize:stepsize] = wibbledmean(ttsum, var_num)
        return var_num + 1

    while stepsize >= 2:
        var_num = fillsquares(var_num)
        var_num = filldiamonds(var_num)
        stepsize //= 2
        wibble /= wibbledecay

    maparray = maparray - maparray.min()
    return (maparray / maparray.max()).reshape(bsize, 1, mapsize, mapsize)