提问者:小点点

决策树学习:PlayTennis数据集


play_u是目标列。

根据我对熵和信息增益的纸笔计算,根节点应该outlook_列,因为它具有最高的熵。

我目前的代码在python:

from sklearn.cross_validation import train_test_split 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.metrics import accuracy_score 
from sklearn import tree 
from sklearn.preprocessing import LabelEncoder

import pandas as pd 
import numpy as np 

df = pd.read_csv('playTennis.csv') 

lb = LabelEncoder() 
df['outlook_'] = lb.fit_transform(df['outlook']) 
df['temp_'] = lb.fit_transform(df['temp'] ) 
df['humidity_'] = lb.fit_transform(df['humidity'] ) 
df['windy_'] = lb.fit_transform(df['windy'] )   
df['play_'] = lb.fit_transform(df['play'] ) 
X = df.iloc[:,5:9] 
Y = df.iloc[:,9]

X_train, X_test , y_train,y_test = train_test_split(X, Y, test_size = 0.3, random_state = 100) 

clf_entropy = DecisionTreeClassifier(criterion='entropy')
clf_entropy.fit(X_train.astype(int),y_train.astype(int)) 
y_pred_en = clf_entropy.predict(X_test)

print("Accuracy is :{0}".format(accuracy_score(y_test.astype(int),y_pred_en) * 100))

共1个答案

匿名用户

我的猜测是,测试和火车的分离是以一种方式发生的,即按湿度进行的分离最终比outlook具有更好的信息增益。你的钢笔用完了吗