Java源码示例:org.nd4j.linalg.api.ops.impl.broadcast.BroadcastMulOp

示例1
/**
 * Denormalize a data array
 *
 * @param array the data to denormalize
 * @param stats statistics of the data population
 */
@Override
public void revert(INDArray array, INDArray maskArray, MinMaxStats stats) {
    // Subtract target range minimum value
    array.subi(minRange);
    // Scale by target range
    array.divi(maxRange - minRange);

    if (array.rank() <= 2) {
        array.muliRowVector(stats.getRange());
        array.addiRowVector(stats.getLower());
    } else {
        Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(array, stats.getRange(), array, 1));
        Nd4j.getExecutioner().execAndReturn(new BroadcastAddOp(array, stats.getLower(), array, 1));
    }

    if (maskArray != null) {
        DataSetUtil.setMaskedValuesToZero(array, maskArray);
    }
}
 
示例2
/**
 * Denormalize a data array
 *
 * @param array the data to denormalize
 * @param stats statistics of the data population
 */
@Override
public void revert(INDArray array, INDArray maskArray, MinMaxStats stats) {
    // Subtract target range minimum value
    array.subi(minRange);
    // Scale by target range
    array.divi(maxRange - minRange);

    if (array.rank() <= 2) {
        array.muliRowVector(stats.getRange());
        array.addiRowVector(stats.getLower());
    } else {
        Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(array, stats.getRange().castTo(array.dataType()), array, 1));
        Nd4j.getExecutioner().execAndReturn(new BroadcastAddOp(array, stats.getLower().castTo(array.dataType()), array, 1));
    }

    if (maskArray != null) {
        DataSetUtil.setMaskedValuesToZero(array, maskArray);
    }
}
 
示例3
@Test
public void testBroadcastMultiDim() throws Exception {
    //Broadcast 1d: OK
    INDArray arr2d = Nd4j.ones(2,3);
    INDArray toBCRow = Nd4j.create(new double[]{1,0,0});
    Nd4j.getExecutioner().exec(new BroadcastMulOp(arr2d, toBCRow, arr2d, 1));
    INDArray exp2d = Nd4j.create(
            new double[][]{
                    {1,0,0},
                    {1,0,0}});

    assertEquals(exp2d, arr2d);


    //Broadcast 2d on 3d:
    INDArray arr3d = Nd4j.ones(2,3,5);
    INDArray bc2d = Nd4j.create(new double[][]{
            {1,1,1,1,1},
            {1,1,1,0,0}});
    bc2d.get(NDArrayIndex.point(1), NDArrayIndex.interval(3,5)).assign(0);

    Nd4j.getExecutioner().exec(new BroadcastMulOp(arr3d, bc2d, arr3d, 0, 2));

    INDArray exp3d = Nd4j.ones(2,3,5);
    exp3d.get(NDArrayIndex.point(1), NDArrayIndex.all(), NDArrayIndex.interval(3,5)).assign(0);

    for( int i=0; i<2; i++ ){
        System.out.println("Arr - " + i);
        System.out.println(arr3d.get(NDArrayIndex.point(i), NDArrayIndex.all(), NDArrayIndex.all()));
        System.out.println("Exp - " + i);
        System.out.println(exp3d.get(NDArrayIndex.point(i), NDArrayIndex.all(), NDArrayIndex.all()));
        System.out.println();
    }

    assertEquals(exp3d, arr3d);
}
 
示例4
@Test
public void testBroadcastMultiDim() {
    INDArray data = Nd4j.linspace(1, 30, 30).reshape(2, 3, 5);
    System.out.println(data);
    INDArray mask = Nd4j.create(new double[][] {{1.00, 1.00, 1.00, 1.00, 1.00}, {1.00, 1.00, 1.00, 0.00, 0.00}});
    Nd4j.getExecutioner().exec(new BroadcastMulOp(data, mask, data, 0, 2));
    INDArray assertion = Nd4j.create(new double[] {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,
                    13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 0.0, 0.0, 21.0, 22.0, 23.0, 0.0, 0.0, 26.0, 27.0, 28.0, 0.0,
                    0.0}).reshape(2, 3, 5);
    assertEquals(assertion, data);
}
 
示例5
/**
 * Denormalize a data array
 *
 * @param array the data to denormalize
 * @param stats statistics of the data population
 */
@Override
public void revert(INDArray array, INDArray maskArray, DistributionStats stats) {
    if (array.rank() <= 2) {
        array.muliRowVector(filteredStd(stats));
        array.addiRowVector(stats.getMean());
    } else {
        Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(array, filteredStd(stats), array, 1));
        Nd4j.getExecutioner().execAndReturn(new BroadcastAddOp(array, stats.getMean(), array, 1));
    }

    if (maskArray != null) {
        DataSetUtil.setMaskedValuesToZero(array, maskArray);
    }
}
 
示例6
@Test
    public void testBroadcastMultiDim() {
        INDArray data = Nd4j.linspace(1, 30, 30, DataType.DOUBLE).reshape(2, 3, 5);
//        System.out.println(data);
        INDArray mask = Nd4j.create(new double[][] {{1.00, 1.00, 1.00, 1.00, 1.00}, {1.00, 1.00, 1.00, 0.00, 0.00}});
        Nd4j.getExecutioner().exec(new BroadcastMulOp(data, mask, data, 0, 2));
        INDArray assertion = Nd4j.create(new double[] {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,
                        13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 0.0, 0.0, 21.0, 22.0, 23.0, 0.0, 0.0, 26.0, 27.0, 28.0, 0.0,
                        0.0}).reshape(2, 3, 5);
        assertEquals(assertion, data);
    }
 
示例7
/**
 * Denormalize a data array
 *
 * @param array the data to denormalize
 * @param stats statistics of the data population
 */
@Override
public void revert(INDArray array, INDArray maskArray, DistributionStats stats) {
    if (array.rank() <= 2) {
        array.muliRowVector(filteredStd(stats));
        array.addiRowVector(stats.getMean());
    } else {
        Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(array, filteredStd(stats).castTo(array.dataType()), array, 1));
        Nd4j.getExecutioner().execAndReturn(new BroadcastAddOp(array, stats.getMean().castTo(array.dataType()), array, 1));
    }

    if (maskArray != null) {
        DataSetUtil.setMaskedValuesToZero(array, maskArray);
    }
}
 
示例8
@Override
public Pair<Gradient, INDArray[]> doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr) {
    if (!canDoBackward())
        throw new IllegalStateException("Cannot do backward pass: error not set");

    INDArray a = inputs[0];
    INDArray b = inputs[1];
    INDArray out = doForward(tbptt, workspaceMgr);
    Transforms.max(out, eps, false); // in case of 0

    INDArray dLdlambda = epsilon; //dL/dlambda aka 'epsilon' - from layer above

    INDArray sNegHalf = out.rdiv(1.0); //s^(-1/2) = 1.0 / s^(1/2) = 1.0 / out

    INDArray diff;
    try(MemoryWorkspace ws = workspaceMgr.notifyScopeBorrowed(ArrayType.ACTIVATION_GRAD)){
        diff = a.sub(b);
    }

    INDArray first = dLdlambda.mul(sNegHalf); //Column vector for all cases

    INDArray dLda;
    INDArray dLdb;
    if (a.rank() == 2) {
        //2d case (MLPs etc)
        dLda = diff.muliColumnVector(first);
        try(MemoryWorkspace ws = workspaceMgr.notifyScopeBorrowed(ArrayType.ACTIVATION_GRAD)) {
            dLdb = dLda.neg();
        }
    } else {
        //RNN and CNN case - Broadcast along dimension 0
        dLda = Nd4j.getExecutioner().exec(new BroadcastMulOp(diff, first, diff, 0));
        try(MemoryWorkspace ws = workspaceMgr.notifyScopeBorrowed(ArrayType.ACTIVATION_GRAD)) {
            dLdb = dLda.neg();
        }
    }

    return new Pair<>(null, new INDArray[] {dLda, dLdb});
}
 
示例9
public static void setMaskedValuesToZero(INDArray data, INDArray mask) {
    if (mask == null || data.rank() != 3)
        return;

    Nd4j.getExecutioner().exec(new BroadcastMulOp(data, mask, data, 0, 2));
}
 
示例10
public static void setMaskedValuesToZero(INDArray data, INDArray mask) {
    if (mask == null || data.rank() != 3)
        return;

    Nd4j.getExecutioner().exec(new BroadcastMulOp(data, mask, data, 0, 2));
}
 
示例11
private INDArray epsilonHelperFullArray(INDArray inputArray, INDArray epsilon, int[] poolDim) {

        //Broadcast: occurs on the remaining dimensions, after the pool dimensions have been removed.
        //TODO find a more efficient way to do this
        int[] broadcastDims = new int[inputArray.rank() - poolDim.length];
        int count = 0;
        for (int i = 0; i < inputArray.rank(); i++) {
            if (ArrayUtils.contains(poolDim, i))
                continue;
            broadcastDims[count++] = i;
        }

        switch (poolingType) {
            case MAX:
                INDArray isMax = Nd4j.exec(new IsMax(inputArray, inputArray.ulike(), poolDim))[0];
                return Nd4j.getExecutioner().exec(new BroadcastMulOp(isMax, epsilon, isMax, broadcastDims));
            case AVG:
                //if out = avg(in,dims) then dL/dIn = 1/N * dL/dOut
                int n = 1;
                for (int d : poolDim) {
                    n *= inputArray.size(d);
                }
                INDArray ret = inputArray.ulike();
                Nd4j.getExecutioner().exec(new BroadcastCopyOp(ret, epsilon, ret, broadcastDims));
                ret.divi(n);

                return ret;
            case SUM:
                INDArray retSum = inputArray.ulike();
                Nd4j.getExecutioner().exec(new BroadcastCopyOp(retSum, epsilon, retSum, broadcastDims));
                return retSum;
            case PNORM:
                int pnorm = layerConf().getPnorm();

                //First: do forward pass to get pNorm array
                INDArray abs = Transforms.abs(inputArray, true);
                Transforms.pow(abs, pnorm, false);

                INDArray pNorm = Transforms.pow(abs.sum(poolDim), 1.0 / pnorm);

                //dL/dIn = dL/dOut * dOut/dIn
                //dOut/dIn = in .* |in|^(p-2) /  ||in||_p^(p-1), where ||in||_p is the output p-norm

                INDArray numerator;
                if (pnorm == 2) {
                    numerator = inputArray.dup();
                } else {
                    INDArray absp2 = Transforms.pow(Transforms.abs(inputArray, true), pnorm - 2, false);
                    numerator = inputArray.mul(absp2);
                }

                INDArray denom = Transforms.pow(pNorm, pnorm - 1, false);
                denom.rdivi(epsilon);
                Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(numerator, denom, numerator, broadcastDims));

                return numerator;
            default:
                throw new RuntimeException("Unknown or not supported pooling type: " + poolingType + " " + layerId());
        }
    }
 
示例12
public static INDArray maskedPoolingTimeSeries(PoolingType poolingType, INDArray toReduce, INDArray mask,
                int pnorm, DataType dataType) {
    if (toReduce.rank() != 3) {
        throw new IllegalArgumentException("Expect rank 3 array: got " + toReduce.rank());
    }
    if (mask.rank() != 2) {
        throw new IllegalArgumentException("Expect rank 2 array for mask: got " + mask.rank());
    }

    toReduce = toReduce.castTo(dataType);
    mask = mask.castTo(dataType);

    //Sum pooling: easy. Multiply by mask, then sum as normal
    //Average pooling: as above, but do a broadcast element-wise divi by mask.sum(1)
    //Max pooling: set to -inf if mask is 0, then do max as normal

    switch (poolingType) {
        case MAX:
            INDArray negInfMask = mask.castTo(dataType).rsub(1.0);
            BooleanIndexing.replaceWhere(negInfMask, Double.NEGATIVE_INFINITY, Conditions.equals(1.0));

            INDArray withInf = Nd4j.createUninitialized(dataType, toReduce.shape());
            Nd4j.getExecutioner().exec(new BroadcastAddOp(toReduce, negInfMask, withInf, 0, 2));
            //At this point: all the masked out steps have value -inf, hence can't be the output of the MAX op

            return withInf.max(2);
        case AVG:
        case SUM:
            INDArray masked = Nd4j.createUninitialized(dataType, toReduce.shape());
            Nd4j.getExecutioner().exec(new BroadcastMulOp(toReduce, mask, masked, 0, 2));
            INDArray summed = masked.sum(2);
            if (poolingType == PoolingType.SUM) {
                return summed;
            }

            INDArray maskCounts = mask.sum(1);
            summed.diviColumnVector(maskCounts);
            return summed;
        case PNORM:
            //Similar to average and sum pooling: there's no N term here, so we can just set the masked values to 0
            INDArray masked2 = Nd4j.createUninitialized(dataType, toReduce.shape());
            Nd4j.getExecutioner().exec(new BroadcastMulOp(toReduce, mask, masked2, 0, 2));

            INDArray abs = Transforms.abs(masked2, true);
            Transforms.pow(abs, pnorm, false);
            INDArray pNorm = abs.sum(2);

            return Transforms.pow(pNorm, 1.0 / pnorm);
        default:
            throw new UnsupportedOperationException("Unknown or not supported pooling type: " + poolingType);
    }
}
 
示例13
public static INDArray maskedPoolingEpsilonTimeSeries(PoolingType poolingType, INDArray input, INDArray mask,
                INDArray epsilon2d, int pnorm) {

    if (input.rank() != 3) {
        throw new IllegalArgumentException("Expect rank 3 input activation array: got " + input.rank());
    }
    if (mask.rank() != 2) {
        throw new IllegalArgumentException("Expect rank 2 array for mask: got " + mask.rank());
    }
    if (epsilon2d.rank() != 2) {
        throw new IllegalArgumentException("Expected rank 2 array for errors: got " + epsilon2d.rank());
    }

    //Mask: [minibatch, tsLength]
    //Epsilon: [minibatch, vectorSize]

    mask = mask.castTo(input.dataType());

    switch (poolingType) {
        case MAX:
            INDArray negInfMask = mask.rsub(1.0);
            BooleanIndexing.replaceWhere(negInfMask, Double.NEGATIVE_INFINITY, Conditions.equals(1.0));

            INDArray withInf = Nd4j.createUninitialized(input.dataType(), input.shape());
            Nd4j.getExecutioner().exec(new BroadcastAddOp(input, negInfMask, withInf, 0, 2));
            //At this point: all the masked out steps have value -inf, hence can't be the output of the MAX op

            INDArray isMax = Nd4j.exec(new IsMax(withInf, withInf.ulike(), 2))[0];

            return Nd4j.getExecutioner().exec(new BroadcastMulOp(isMax, epsilon2d, isMax, 0, 1));
        case AVG:
        case SUM:
            //if out = sum(in,dims) then dL/dIn = dL/dOut -> duplicate to each step and mask
            //if out = avg(in,dims) then dL/dIn = 1/N * dL/dOut
            //With masking: N differs for different time series

            INDArray out = Nd4j.createUninitialized(input.dataType(), input.shape(), 'f');

            //Broadcast copy op, then divide and mask to 0 as appropriate
            Nd4j.getExecutioner().exec(new BroadcastCopyOp(out, epsilon2d, out, 0, 1));
            Nd4j.getExecutioner().exec(new BroadcastMulOp(out, mask, out, 0, 2));

            if (poolingType == PoolingType.SUM) {
                return out;
            }

            INDArray nEachTimeSeries = mask.sum(1); //[minibatchSize,tsLength] -> [minibatchSize,1]
            Nd4j.getExecutioner().exec(new BroadcastDivOp(out, nEachTimeSeries, out, 0));

            return out;

        case PNORM:
            //Similar to average and sum pooling: there's no N term here, so we can just set the masked values to 0
            INDArray masked2 = Nd4j.createUninitialized(input.dataType(), input.shape());
            Nd4j.getExecutioner().exec(new BroadcastMulOp(input, mask, masked2, 0, 2));

            INDArray abs = Transforms.abs(masked2, true);
            Transforms.pow(abs, pnorm, false);
            INDArray pNorm = Transforms.pow(abs.sum(2), 1.0 / pnorm);

            INDArray numerator;
            if (pnorm == 2) {
                numerator = input.dup();
            } else {
                INDArray absp2 = Transforms.pow(Transforms.abs(input, true), pnorm - 2, false);
                numerator = input.mul(absp2);
            }

            INDArray denom = Transforms.pow(pNorm, pnorm - 1, false);
            denom.rdivi(epsilon2d);
            Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(numerator, denom, numerator, 0, 1));
            Nd4j.getExecutioner().exec(new BroadcastMulOp(numerator, mask, numerator, 0, 2)); //Apply mask

            return numerator;
        default:
            throw new UnsupportedOperationException("Unknown or not supported pooling type: " + poolingType);
    }
}
 
示例14
public static INDArray maskedPoolingConvolution(PoolingType poolingType, INDArray toReduce, INDArray mask, int pnorm, DataType dataType) {
    if(mask.rank() != 4){
        //TODO BETTER ERROR MESSAGE EXPLAINING FORMAT
        //TODO ALSO HANDLE LEGACY FORMAT WITH WARNING WHERE POSSIBLE
        throw new IllegalStateException("Expected rank 4 mask array: Got array with shape " + Arrays.toString(mask.shape()));
    }

    mask = mask.castTo(dataType);   //no-op if already correct dtype

    // [minibatch, channels, h, w] data with a mask array of shape [minibatch, 1, X, Y]
    // where X=(1 or inH) and Y=(1 or inW)

    //General case: must be equal or 1 on each dimension
    int[] dimensions = new int[4];
    int count = 0;
    for(int i=0; i<4; i++ ){
        if(toReduce.size(i) == mask.size(i)){
            dimensions[count++] = i;
        }
    }
    if(count < 4){
        dimensions = Arrays.copyOfRange(dimensions, 0, count);
    }

    switch (poolingType) {
        case MAX:
            //TODO This is ugly - replace it with something better... Need something like a Broadcast CAS op
            INDArray negInfMask;
            if(mask.dataType() == DataType.BOOL){
                negInfMask = Transforms.not(mask).castTo(dataType);
            } else {
                negInfMask = mask.rsub(1.0);
            }
            BooleanIndexing.replaceWhere(negInfMask, Double.NEGATIVE_INFINITY, Conditions.equals(1.0));

            INDArray withInf = Nd4j.createUninitialized(dataType, toReduce.shape());
            Nd4j.getExecutioner().exec(new BroadcastAddOp(toReduce, negInfMask, withInf, dimensions));
            //At this point: all the masked out steps have value -inf, hence can't be the output of the MAX op

            return withInf.max(2, 3);
        case AVG:
        case SUM:
            INDArray masked = Nd4j.createUninitialized(dataType, toReduce.shape());
            Nd4j.getExecutioner().exec(new BroadcastMulOp(toReduce, mask, masked, dimensions));

            INDArray summed = masked.sum(2, 3);
            if (poolingType == PoolingType.SUM) {
                return summed;
            }
            INDArray maskCounts = mask.sum(1,2,3);
            summed.diviColumnVector(maskCounts);
            return summed;

        case PNORM:
            //Similar to average and sum pooling: there's no N term here, so we can just set the masked values to 0
            INDArray masked2 = Nd4j.createUninitialized(dataType, toReduce.shape());
            Nd4j.getExecutioner().exec(new BroadcastMulOp(toReduce, mask, masked2, dimensions));

            INDArray abs = Transforms.abs(masked2, true);
            Transforms.pow(abs, pnorm, false);
            INDArray pNorm = abs.sum(2, 3);

            return Transforms.pow(pNorm, 1.0 / pnorm);
        default:
            throw new UnsupportedOperationException("Unknown or not supported pooling type: " + poolingType);
    }
}
 
示例15
public static INDArray maskedPoolingEpsilonCnn(PoolingType poolingType, INDArray input, INDArray mask,
                INDArray epsilon2d, int pnorm, DataType dataType) {

    // [minibatch, channels, h=1, w=X] or [minibatch, channels, h=X, w=1] data
    // with a mask array of shape [minibatch, X]

    //If masking along height: broadcast dimensions are [0,2]
    //If masking along width: broadcast dimensions are [0,3]

    mask = mask.castTo(dataType);   //No-op if correct type

    //General case: must be equal or 1 on each dimension
    int[] dimensions = new int[4];
    int count = 0;
    for(int i=0; i<4; i++ ){
        if(input.size(i) == mask.size(i)){
            dimensions[count++] = i;
        }
    }
    if(count < 4){
        dimensions = Arrays.copyOfRange(dimensions, 0, count);
    }

    switch (poolingType) {
        case MAX:
            //TODO This is ugly - replace it with something better... Need something like a Broadcast CAS op
            INDArray negInfMask;
            if(mask.dataType() == DataType.BOOL){
                negInfMask = Transforms.not(mask).castTo(dataType);
            } else {
                negInfMask = mask.rsub(1.0);
            }
            BooleanIndexing.replaceWhere(negInfMask, Double.NEGATIVE_INFINITY, Conditions.equals(1.0));

            INDArray withInf = Nd4j.createUninitialized(dataType, input.shape());
            Nd4j.getExecutioner().exec(new BroadcastAddOp(input, negInfMask, withInf, dimensions));
            //At this point: all the masked out steps have value -inf, hence can't be the output of the MAX op

            INDArray isMax = Nd4j.exec(new IsMax(withInf, withInf.ulike(), 2, 3))[0];

            return Nd4j.getExecutioner().exec(new BroadcastMulOp(isMax, epsilon2d, isMax, 0, 1));
        case AVG:
        case SUM:
            //if out = sum(in,dims) then dL/dIn = dL/dOut -> duplicate to each step and mask
            //if out = avg(in,dims) then dL/dIn = 1/N * dL/dOut
            //With masking: N differs for different time series

            INDArray out = Nd4j.createUninitialized(dataType, input.shape(), 'f');

            //Broadcast copy op, then divide and mask to 0 as appropriate
            Nd4j.getExecutioner().exec(new BroadcastCopyOp(out, epsilon2d, out, 0, 1));
            Nd4j.getExecutioner().exec(new BroadcastMulOp(out, mask, out, dimensions));

            if (poolingType == PoolingType.SUM) {
                return out;
            }

            //Note that with CNNs, current design is restricted to [minibatch, channels, 1, W] ot [minibatch, channels, H, 1]
            INDArray nEachTimeSeries = mask.sum(1,2,3); //[minibatchSize,tsLength] -> [minibatchSize,1]
            Nd4j.getExecutioner().exec(new BroadcastDivOp(out, nEachTimeSeries, out, 0));

            return out;

        case PNORM:
            //Similar to average and sum pooling: there's no N term here, so we can just set the masked values to 0
            INDArray masked2 = Nd4j.createUninitialized(dataType, input.shape());
            Nd4j.getExecutioner().exec(new BroadcastMulOp(input, mask, masked2, dimensions));

            INDArray abs = Transforms.abs(masked2, true);
            Transforms.pow(abs, pnorm, false);
            INDArray pNorm = Transforms.pow(abs.sum(2, 3), 1.0 / pnorm);

            INDArray numerator;
            if (pnorm == 2) {
                numerator = input.dup();
            } else {
                INDArray absp2 = Transforms.pow(Transforms.abs(input, true), pnorm - 2, false);
                numerator = input.mul(absp2);
            }

            INDArray denom = Transforms.pow(pNorm, pnorm - 1, false);
            denom.rdivi(epsilon2d);
            Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(numerator, denom, numerator, 0, 1));
            Nd4j.getExecutioner().exec(new BroadcastMulOp(numerator, mask, numerator, dimensions)); //Apply mask

            return numerator;
        default:
            throw new UnsupportedOperationException("Unknown or not supported pooling type: " + poolingType);

    }
}
 
示例16
@Test
    public void testCnnForwardBackward() {
        double eps = 1e-5;
        int nIn = 4;
        int hw = 3;
        int minibatch = 2;
        Nd4j.getRandom().setSeed(12345);
        INDArray input = Nd4j.rand('c', new int[]{minibatch, nIn, hw, hw});

        //TODO: other values for gamma/beta
        INDArray gamma = Nd4j.ones(1, nIn);
        INDArray beta = Nd4j.zeros(1, nIn);

        Layer l = getLayer(nIn, eps, false, -1, -1);

        INDArray mean = input.mean(0, 2, 3);
        INDArray var = input.var(false, 0, 2, 3);
        INDArray xHat = Nd4j.getExecutioner().exec(new BroadcastSubOp(input, mean, input.dup(), 1));
        Nd4j.getExecutioner().exec(new BroadcastDivOp(xHat, Transforms.sqrt(var.add(eps), true), xHat, 1));

        INDArray outExpected = Nd4j.getExecutioner().exec(new BroadcastMulOp(xHat, gamma, xHat.dup(), 1));
        Nd4j.getExecutioner().exec(new BroadcastAddOp(outExpected, beta, outExpected, 1));

        INDArray out = l.activate(input, true, LayerWorkspaceMgr.noWorkspaces());

//        System.out.println(Arrays.toString(outExpected.data().asDouble()));
//        System.out.println(Arrays.toString(out.data().asDouble()));

        assertEquals(outExpected, out);

        //-------------------------------------------------------------
        //Check backprop
        INDArray epsilon = Nd4j.rand('c', new int[]{minibatch, nIn, hw, hw}); //dL/dy

        int effectiveMinibatch = minibatch * hw * hw;

        INDArray dldgammaExp = epsilon.mul(xHat).sum(0, 2, 3);
        dldgammaExp = dldgammaExp.reshape(1, dldgammaExp.length());
        INDArray dldbetaExp = epsilon.sum(0, 2, 3);
        dldbetaExp = dldbetaExp.reshape(1, dldbetaExp.length());

        INDArray dldxhat = Nd4j.getExecutioner().exec(new BroadcastMulOp(epsilon, gamma, epsilon.dup(), 1)); //epsilon.mulRowVector(gamma);

        INDArray inputSubMean = Nd4j.getExecutioner().exec(new BroadcastSubOp(input, mean, input.dup(), 1));

        INDArray dldvar = dldxhat.mul(inputSubMean).mul(-0.5);
        dldvar = Nd4j.getExecutioner().exec(
                new BroadcastMulOp(dldvar, Transforms.pow(var.add(eps), -3.0 / 2.0, true), dldvar.dup(), 1));
        dldvar = dldvar.sum(0, 2, 3);


        INDArray dldmu = Nd4j
                .getExecutioner().exec(new BroadcastMulOp(dldxhat,
                        Transforms.pow(var.add(eps), -1.0 / 2.0, true), dldxhat.dup(), 1))
                .neg().sum(0, 2, 3);
        dldmu = dldmu.add(dldvar.mul(inputSubMean.mul(-2.0).sum(0, 2, 3).div(effectiveMinibatch)));

        INDArray dldinExp = Nd4j.getExecutioner().exec(
                new BroadcastMulOp(dldxhat, Transforms.pow(var.add(eps), -1.0 / 2.0, true), dldxhat.dup(), 1));
        dldinExp = dldinExp.add(Nd4j.getExecutioner().exec(
                new BroadcastMulOp(inputSubMean.mul(2.0 / effectiveMinibatch), dldvar, inputSubMean.dup(), 1)));
        dldinExp = Nd4j.getExecutioner().exec(
                new BroadcastAddOp(dldinExp, dldmu.mul(1.0 / effectiveMinibatch), dldinExp.dup(), 1));

        Pair<Gradient, INDArray> p = l.backpropGradient(epsilon, LayerWorkspaceMgr.noWorkspaces());

        INDArray dldgamma = p.getFirst().getGradientFor("gamma");
        INDArray dldbeta = p.getFirst().getGradientFor("beta");

        assertEquals(dldgammaExp, dldgamma);
        assertEquals(dldbetaExp, dldbeta);

        //        System.out.println("EPSILONS");
        //        System.out.println(Arrays.toString(dldinExp.data().asDouble()));
        //        System.out.println(Arrays.toString(p.getSecond().dup().data().asDouble()));
        assertEquals(dldinExp, p.getSecond());
    }
 
示例17
@Test
public void testMaskingCnnDim3_SingleExample() {
    //Test masking, where mask is along dimension 3

    int minibatch = 1;
    int depthIn = 2;
    int depthOut = 2;
    int nOut = 2;
    int height = 3;
    int width = 6;

    PoolingType[] poolingTypes =
                    new PoolingType[] {PoolingType.SUM, PoolingType.AVG, PoolingType.MAX, PoolingType.PNORM};

    for (PoolingType pt : poolingTypes) {
        MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().weightInit(WeightInit.XAVIER)
                        .convolutionMode(ConvolutionMode.Same).seed(12345L).list()
                        .layer(0, new ConvolutionLayer.Builder().nIn(depthIn).nOut(depthOut).kernelSize(height, 2)
                                        .stride(height, 1).activation(Activation.TANH).build())
                        .layer(1, new org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder().poolingType(pt)
                                        .build())
                        .layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
                                        .activation(Activation.SOFTMAX).nIn(depthOut).nOut(nOut).build())
                        .build();

        MultiLayerNetwork net = new MultiLayerNetwork(conf);
        net.init();

        INDArray inToBeMasked = Nd4j.rand(new int[] {minibatch, depthIn, height, width});

        //Shape for mask: [minibatch, 1, 1, width]
        INDArray maskArray = Nd4j.create(new double[] {1, 1, 1, 1, 1, 0}, new int[]{1,1,1,width});

        //Multiply the input by the mask array, to ensure the 0s in the mask correspond to 0s in the input vector
        // as would be the case in practice...
        Nd4j.getExecutioner().exec(new BroadcastMulOp(inToBeMasked, maskArray, inToBeMasked, 0, 3));


        net.setLayerMaskArrays(maskArray, null);

        INDArray outMasked = net.output(inToBeMasked);
        net.clearLayerMaskArrays();

        int numSteps = width - 1;
        INDArray subset = inToBeMasked.get(NDArrayIndex.interval(0, 0, true), NDArrayIndex.all(),
                        NDArrayIndex.all(), NDArrayIndex.interval(0, numSteps));
        assertArrayEquals(new long[] {1, depthIn, height, 5}, subset.shape());

        INDArray outSubset = net.output(subset);
        INDArray outMaskedSubset = outMasked.getRow(0);

        assertEquals(outSubset, outMaskedSubset);

        //Finally: check gradient calc for exceptions
        net.setLayerMaskArrays(maskArray, null);
        net.setInput(inToBeMasked);
        INDArray labels = Nd4j.create(new double[] {0, 1}, new long[]{1,2});
        net.setLabels(labels);

        net.computeGradientAndScore();
    }
}
 
示例18
@Test
public void testMaskingCnnDim2_SingleExample() {
    //Test masking, where mask is along dimension 2

    int minibatch = 1;
    int depthIn = 2;
    int depthOut = 2;
    int nOut = 2;
    int height = 6;
    int width = 3;

    PoolingType[] poolingTypes =
                    new PoolingType[] {PoolingType.SUM, PoolingType.AVG, PoolingType.MAX, PoolingType.PNORM};

    for (PoolingType pt : poolingTypes) {
        MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().weightInit(WeightInit.XAVIER)
                        .convolutionMode(ConvolutionMode.Same).seed(12345L).list()
                        .layer(0, new ConvolutionLayer.Builder().nIn(depthIn).nOut(depthOut).kernelSize(2, width)
                                        .stride(1, width).activation(Activation.TANH).build())
                        .layer(1, new org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder().poolingType(pt)
                                        .build())
                        .layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
                                        .activation(Activation.SOFTMAX).nIn(depthOut).nOut(nOut).build())
                        .build();

        MultiLayerNetwork net = new MultiLayerNetwork(conf);
        net.init();

        INDArray inToBeMasked = Nd4j.rand(new int[] {minibatch, depthIn, height, width});

        //Shape for mask: [minibatch, width]
        INDArray maskArray = Nd4j.create(new double[] {1, 1, 1, 1, 1, 0}, new int[]{1,1,height,1});

        //Multiply the input by the mask array, to ensure the 0s in the mask correspond to 0s in the input vector
        // as would be the case in practice...
        Nd4j.getExecutioner().exec(new BroadcastMulOp(inToBeMasked, maskArray, inToBeMasked, 0, 2));


        net.setLayerMaskArrays(maskArray, null);

        INDArray outMasked = net.output(inToBeMasked);
        net.clearLayerMaskArrays();

        int numSteps = height - 1;
        INDArray subset = inToBeMasked.get(NDArrayIndex.interval(0, 0, true), NDArrayIndex.all(),
                        NDArrayIndex.interval(0, numSteps), NDArrayIndex.all());
        assertArrayEquals(new long[] {1, depthIn, 5, width}, subset.shape());

        INDArray outSubset = net.output(subset);
        INDArray outMaskedSubset = outMasked.getRow(0);

        assertEquals(outSubset, outMaskedSubset);

        //Finally: check gradient calc for exceptions
        net.setLayerMaskArrays(maskArray, null);
        net.setInput(inToBeMasked);
        INDArray labels = Nd4j.create(new double[] {0, 1}, new long[]{1,2});
        net.setLabels(labels);

        net.computeGradientAndScore();
    }
}
 
示例19
@Test
public void testMaskingCnnDim3() {
    //Test masking, where mask is along dimension 3

    int minibatch = 3;
    int depthIn = 3;
    int depthOut = 4;
    int nOut = 5;
    int height = 3;
    int width = 6;

    PoolingType[] poolingTypes =
                    new PoolingType[] {PoolingType.SUM, PoolingType.AVG, PoolingType.MAX, PoolingType.PNORM};

    for (PoolingType pt : poolingTypes) {
        MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().weightInit(WeightInit.XAVIER)
                        .convolutionMode(ConvolutionMode.Same).seed(12345L).list()
                        .layer(0, new ConvolutionLayer.Builder().nIn(depthIn).nOut(depthOut).kernelSize(height, 2)
                                        .stride(height, 1).activation(Activation.TANH).build())
                        .layer(1, new org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder().poolingType(pt)
                                        .build())
                        .layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
                                        .activation(Activation.SOFTMAX).nIn(depthOut).nOut(nOut).build())
                        .build();

        MultiLayerNetwork net = new MultiLayerNetwork(conf);
        net.init();

        INDArray inToBeMasked = Nd4j.rand(new int[] {minibatch, depthIn, height, width});

        //Shape for mask: [minibatch, width]
        INDArray maskArray = Nd4j.create(new double[][] {{1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 0}, {1, 1, 1, 1, 0, 0}})
                .reshape('c', minibatch, 1, 1, width);

        //Multiply the input by the mask array, to ensure the 0s in the mask correspond to 0s in the input vector
        // as would be the case in practice...
        Nd4j.getExecutioner().exec(new BroadcastMulOp(inToBeMasked, maskArray, inToBeMasked, 0, 3));


        net.setLayerMaskArrays(maskArray, null);

        INDArray outMasked = net.output(inToBeMasked);
        net.clearLayerMaskArrays();

        for (int i = 0; i < minibatch; i++) {
            int numSteps = width - i;
            INDArray subset = inToBeMasked.get(NDArrayIndex.interval(i, i, true), NDArrayIndex.all(),
                            NDArrayIndex.all(), NDArrayIndex.interval(0, numSteps));
            assertArrayEquals(new long[] {1, depthIn, height, width - i}, subset.shape());

            INDArray outSubset = net.output(subset);
            INDArray outMaskedSubset = outMasked.getRow(i, true);

            assertEquals("minibatch: " + i, outSubset, outMaskedSubset);
        }
    }
}
 
示例20
@Test
public void testMaskingCnnDim2() {
    //Test masking, where mask is along dimension 2

    int minibatch = 3;
    int depthIn = 3;
    int depthOut = 4;
    int nOut = 5;
    int height = 5;
    int width = 4;

    PoolingType[] poolingTypes =
                    new PoolingType[] {PoolingType.SUM, PoolingType.AVG, PoolingType.MAX, PoolingType.PNORM};

    for (PoolingType pt : poolingTypes) {
        MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().weightInit(WeightInit.XAVIER)
                        .convolutionMode(ConvolutionMode.Same).seed(12345L).list()
                        .layer(0, new ConvolutionLayer.Builder().nIn(depthIn).nOut(depthOut).kernelSize(2, width)
                                        .stride(1, width).activation(Activation.TANH).build())
                        .layer(1, new org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder().poolingType(pt)
                                        .build())
                        .layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
                                        .activation(Activation.SOFTMAX).nIn(depthOut).nOut(nOut).build())
                        .build();

        MultiLayerNetwork net = new MultiLayerNetwork(conf);
        net.init();

        INDArray inToBeMasked = Nd4j.rand(new int[] {minibatch, depthIn, height, width});

        //Shape for mask: [minibatch, 1, height, 1] -> broadcast
        INDArray maskArray = Nd4j.create(new double[][] {{1, 1, 1, 1, 1}, {1, 1, 1, 1, 0}, {1, 1, 1, 0, 0}})
                .reshape('c', minibatch, 1, height, 1);

        //Multiply the input by the mask array, to ensure the 0s in the mask correspond to 0s in the input vector
        // as would be the case in practice...
        Nd4j.getExecutioner().exec(new BroadcastMulOp(inToBeMasked, maskArray, inToBeMasked, 0, 2));


        net.setLayerMaskArrays(maskArray, null);

        INDArray outMasked = net.output(inToBeMasked);
        net.clearLayerMaskArrays();

        for (int i = 0; i < minibatch; i++) {
            int numSteps = height - i;
            INDArray subset = inToBeMasked.get(NDArrayIndex.interval(i, i, true), NDArrayIndex.all(),
                            NDArrayIndex.interval(0, numSteps), NDArrayIndex.all());
            assertArrayEquals(new long[] {1, depthIn, height - i, width}, subset.shape());

            INDArray outSubset = net.output(subset);
            INDArray outMaskedSubset = outMasked.getRow(i, true);

            assertEquals("minibatch: " + i, outSubset, outMaskedSubset);
        }
    }
}