提问者:小点点

pandas中数字数据帧转换为整数的错误--“只有整数标量数组才能转换为标量索引”


我有一个很大的数据集,正在尝试在Python/Pandas中将只包含数值数据的'object'列转换为'integer'数据类型。 对于我尝试的每一段代码,我都收到以下错误:

CODE SNIPPET (see below for options I have tried)
PATH/frame.py in __setiten__(self, key, value)
     3482              self._setitem_frame(key, value)
     3483         elif isinstance(key, (Series, np.ndarray, list, Index)):
  -->3484              self._setiten_array(key, value)
     3485         else: 

PATH/frame.py in _setitem_array(self, key, value)
     3507                  raise ValueError("Columns must be same length as key")
     3508              for k1, k2 in zip(key, value.columns):
  -->3509                  self[k1] = value[k2]
     3510           else: 
     3511              indexer = self.loc._convert_to_indexer(key, axis=1)
    
PATH/frame.py in __setitem__(self, key, value)
     3485         else: 
     3486             #set column
  -->3487             self._set_item(key, value)
     3488
     3489    def _setitem_slice(self, key, value):

PATH/frame.py in _set_item(self, key, value)
     3562
     3563     self._ensure_valid_index(value)
  -->3564     value = self._sanitize_column(key, value)
     3565     NDFrame._set_item(self, key, value)

PATH/frame.py in _sanitize_column(self, key, value, broadcast)
     3778     if broadcast and key in self.columns and value.ndim == 1: 
     3780         if not self.columns.is_unique or isinstance(self.columns, MultiIndex):
  -->3781             existing_piece = self[key]
     3782             if isinstance(existing_piece, DataFrame):
     3783                 value = np.tile(value, (len(existing_piece.columns), 1))

PATH/frame.py in __getitem__(self, key)
     2971     if self.columns.nlevels > 1:
     2972          return self.getitem_multilevel(key)
  -->2973     return self.__get_item_cache(key_
     2974
     2975     # Do we have a slicer (on rows)?

PATH/generic.py in _get_item_cache(self, item)
     3268    res = cache.get(item)
     3269    if res is None:
  -->3270         values = self.data.get(item)
     3271         res = self.box_item_values(item, values)
     3272         cache[item] = res

PATH/managers.py in get(self, item)
     958                      raise ValueError("cannot label index with a null key")
     959      
  -->960                return self.iget(loc)
     961          else:
     962
    
PATH/managers.py in iget(self, i)
     975     Otherwise return as a ndarray
     976     """
  -->977     block = self.blocks[self.blknos[i]]
     978     values = block.iget(self._blklocks[i])
     978     if values.ndi != 1:

    TypeError: only integer scalar arrays can be concerted to a scalar index

我所尝试的,所有这些都扭转了(上面的)错误:

df[["column1", "column 2", "column 3", "column 4"]] = df[["column 1", "column 2", "column 3", "column 4"]].apply(pd.to_numeric, errors='raise')

df[["column1", "column 2", "column 3", "column 4"]] = df[["column 1", "column 2", "column 3", "column 4"]].apply(pd.to_numeric, errors='raise')

其中,df=Python中的数据帧名称; 列1等=python中的列名

我也试过:

df["column1"] = df["column1"].astype(str).astype(int)

df["column1"] = pd.numeric(df["column1"], errors = 'coerce')

它也返回相同的错误。 我仔细检查了数据类型。 df.dTypes显示了无论我做什么都要作为“对象”更改的列的数据类型。 我仔细检查了代码,有问题的列没有丢失/空值。 我还检查了格式,列完全是数字的。 一列用三个数字格式化(即207,710,115),另一列用两个数字格式化(01,02,03),最后一列用五个数字格式化(00001,00002,00003)。。。。

如有任何帮助,我们将不胜感激。 如果我找到答案,我会把它贴在这里。


共1个答案

匿名用户

请尝试以下操作:

for col in ["column1", "column 2", "column 3", "column 4"]:
    df[col] = [int(n) for n in df[col]]