我有一个很大的数据集,正在尝试在Python/Pandas中将只包含数值数据的'object'列转换为'integer'数据类型。 对于我尝试的每一段代码,我都收到以下错误:
CODE SNIPPET (see below for options I have tried)
PATH/frame.py in __setiten__(self, key, value)
3482 self._setitem_frame(key, value)
3483 elif isinstance(key, (Series, np.ndarray, list, Index)):
-->3484 self._setiten_array(key, value)
3485 else:
PATH/frame.py in _setitem_array(self, key, value)
3507 raise ValueError("Columns must be same length as key")
3508 for k1, k2 in zip(key, value.columns):
-->3509 self[k1] = value[k2]
3510 else:
3511 indexer = self.loc._convert_to_indexer(key, axis=1)
PATH/frame.py in __setitem__(self, key, value)
3485 else:
3486 #set column
-->3487 self._set_item(key, value)
3488
3489 def _setitem_slice(self, key, value):
PATH/frame.py in _set_item(self, key, value)
3562
3563 self._ensure_valid_index(value)
-->3564 value = self._sanitize_column(key, value)
3565 NDFrame._set_item(self, key, value)
PATH/frame.py in _sanitize_column(self, key, value, broadcast)
3778 if broadcast and key in self.columns and value.ndim == 1:
3780 if not self.columns.is_unique or isinstance(self.columns, MultiIndex):
-->3781 existing_piece = self[key]
3782 if isinstance(existing_piece, DataFrame):
3783 value = np.tile(value, (len(existing_piece.columns), 1))
PATH/frame.py in __getitem__(self, key)
2971 if self.columns.nlevels > 1:
2972 return self.getitem_multilevel(key)
-->2973 return self.__get_item_cache(key_
2974
2975 # Do we have a slicer (on rows)?
PATH/generic.py in _get_item_cache(self, item)
3268 res = cache.get(item)
3269 if res is None:
-->3270 values = self.data.get(item)
3271 res = self.box_item_values(item, values)
3272 cache[item] = res
PATH/managers.py in get(self, item)
958 raise ValueError("cannot label index with a null key")
959
-->960 return self.iget(loc)
961 else:
962
PATH/managers.py in iget(self, i)
975 Otherwise return as a ndarray
976 """
-->977 block = self.blocks[self.blknos[i]]
978 values = block.iget(self._blklocks[i])
978 if values.ndi != 1:
TypeError: only integer scalar arrays can be concerted to a scalar index
我所尝试的,所有这些都扭转了(上面的)错误:
df[["column1", "column 2", "column 3", "column 4"]] = df[["column 1", "column 2", "column 3", "column 4"]].apply(pd.to_numeric, errors='raise')
和
df[["column1", "column 2", "column 3", "column 4"]] = df[["column 1", "column 2", "column 3", "column 4"]].apply(pd.to_numeric, errors='raise')
其中,df=Python中的数据帧名称; 列1等=python中的列名
我也试过:
df["column1"] = df["column1"].astype(str).astype(int)
和
df["column1"] = pd.numeric(df["column1"], errors = 'coerce')
它也返回相同的错误。 我仔细检查了数据类型。 df.dTypes
显示了无论我做什么都要作为“对象”更改的列的数据类型。 我仔细检查了代码,有问题的列没有丢失/空值。 我还检查了格式,列完全是数字的。 一列用三个数字格式化(即207,710,115),另一列用两个数字格式化(01,02,03),最后一列用五个数字格式化(00001,00002,00003)。。。。
如有任何帮助,我们将不胜感激。 如果我找到答案,我会把它贴在这里。
请尝试以下操作:
for col in ["column1", "column 2", "column 3", "column 4"]:
df[col] = [int(n) for n in df[col]]