提问者:小点点

如何使用矩阵在python中创建图像?


m = [98.75, 97, 96.66, 42, 9, 4, 1,98.33, 95, 93.33, 44, 7, 4, 1,95,94,87.5, 38.33, 5, 0, 
0,95, 93, 85, 35.55,5,0,0,95,92,83,30,3.33,0,0,95,91,80,28,1.66,0,0,95,90,75,21.25,1.66,0,0]

从上面的列表中,我需要创建一个7x7的矩阵,如下所示:

      [,1]  [,2]  [,3]  [,4]  [,5]  [,6]  [,7]
 [1,] 98.75 98.33 95.00 95.00 95.00 95.00 95.00
 [2,] 97.00 95.00 94.00 93.00 92.00 91.00 90.00
 [3,] 96.66 93.33 87.50 85.00 83.00 80.00 75.00
 [4,] 42.00 44.00 38.33 35.55 30.00 28.00 21.25
 [5,]  9.00  7.00  5.00  5.00  3.33  1.66  1.66
 [6,]  4.00  4.00  0.00  0.00  0.00  0.00  0.00
 [7,]  1.00  1.00  0.00  0.00  0.00  0.00  0.00

需要从矩阵中生成如下图像:


共2个答案

匿名用户

首先,使用numpy将列表转换为数组,然后使用reshape,然后使用您最喜欢的包进行绘图。 seabornmatplotlib:

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

m = [98.75, 97, 96.66, 42, 9, 4, 1,98.33, 95, 93.33, 44, 7, 4, 1,95,94,87.5, 38.33, 5, 0, 
0,95, 93, 85, 35.55,5,0,0,95,92,83,30,3.33,0,0,95,91,80,28,1.66,0,0,95,90,75,21.25,1.66,0,0]


data = np.asarray(m).reshape(7,7)
sns.heatmap(data, cmap = 'jet')
# plt.imshow(data)
plt.xlabel('Gain USRP2 (receiver side) (db)')
plt.ylabel('Gain USRP1 (sender side) (db)')

匿名用户

我喜欢使用plt.matshow():

import numpy as np
import matplotlib.pyplot as plt

m = [98.75, 97, 96.66, 42, 9, 4, 1,98.33, 95, 93.33, 
     44, 7, 4, 1,95,94,87.5, 38.33, 5, 0, 0,95, 93, 
     85, 35.55,5,0,0,95,92,83,30,3.33,0,0,95,91,80,28,
     1.66,0,0,95,90,75,21.25,1.66,0,0]

plt.matshow(np.array(m).reshape(7, 7).T)
plt.show()