关于Pytorch的MLP模块实现方式


本文向大家介绍关于Pytorch的MLP模块实现方式,包括了关于Pytorch的MLP模块实现方式的使用技巧和注意事项,需要的朋友参考一下

MLP分类效果一般好于线性分类器,即将特征输入MLP中再经过softmax来进行分类。

具体实现为将原先线性分类模块:

self.classifier = nn.Linear(config.hidden_size, num_labels)

替换为:

self.classifier = MLP(config.hidden_size, num_labels)

并且添加MLP模块:

  class MLP(nn.Module):
    def __init__(self, input_size, common_size):
      super(MLP, self).__init__()
      self.linear = nn.Sequential(
        nn.Linear(input_size, input_size // 2),
        nn.ReLU(inplace=True),
        nn.Linear(input_size // 2, input_size // 4),
        nn.ReLU(inplace=True),
        nn.Linear(input_size // 4, common_size)
      )
 
    def forward(self, x):
      out = self.linear(x)
      return out

看一下模块结构:

mlp = MLP(1000,3)
print(mlp)

以上这篇关于Pytorch的MLP模块实现方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。

声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#yiidian.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。