Python+OpenCV图片局部区域像素值处理改进版详解


本文向大家介绍Python+OpenCV图片局部区域像素值处理改进版详解,包括了Python+OpenCV图片局部区域像素值处理改进版详解的使用技巧和注意事项,需要的朋友参考一下

上个版本的Python OpenCV图片局部区域像素值处理,虽然实现了我需要的功能,但还是走了很多弯路,我意识到图片本就是数组形式,对于8位灰度图,通道数为1,它就是个二位数组,这样就没有必要再设置ROI区域,复制出来这块区域再循环提取像素存入数组进行处理了,可以直接将图片存入数组,再利用numpy进行切分相应的数组操作就可以了,这样一想就简单很多了,这篇我会贴出修改后的代码,直接省去了大段的代码啊。

ps:这次我重新装的opencv3.2.0版本,代码里面直接用cv2了

# 查看opencv版本,终端输入:
$ pkg-config --modversion opencv

cv_img_cv2.py

# -*- coding:utf-8 -*-
__author__ = 'lwp'

import cv2
import numpy as np
import matplotlib.pyplot as plt
 
path ='/media/lwp/A/111111.jpg' # 图片路径
lwpImg = cv2.imread(path) # 加载图片
gray_lwpImg = cv2.cvtColor(lwpImg, cv2.COLOR_BGR2GRAY) # 转为灰度图

# 画目标区域,参数分别为图片、左上坐标、右下坐标、框的颜色、框线条的粗细
lwpImg = cv2.rectangle(lwpImg, (290, 0), (310, 327), (0, 255, 0), 2) 
# 显示标记后的图片
cv2.imshow('local_pixel', lwpImg) 

# 提取图片像素值到矩阵
pixel_data = np.array(gray_lwpImg)
# 提取目标区域
box_data = pixel_data[:, 290:310]
# 矩阵行求和
pixel_sum = np.sum(box_data, axis=1)

# 画图
x = range(576)
fig = plt.figure(figsize=(4, 2))
ax1 = fig.add_subplot(1, 1, 1)
ax1.bar(x, pixel_sum, width=1) # x为每个条形到x轴0点的距离,width为每个条的宽度
plt.xlabel('X')
plt.ylabel('Y')
plt.title('edge_filter')
plt.grid(True)
plt.show()

key = cv2.waitKey(0) & 0xFF
if key == ord('q'): # 按q关闭窗口
  cv2.destroyAllWindows()

效果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持呐喊教程。

声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#yiidian.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。