在pytorch中查看可训练参数的例子
本文向大家介绍在pytorch中查看可训练参数的例子,包括了在pytorch中查看可训练参数的例子的使用技巧和注意事项,需要的朋友参考一下
pytorch中我们有时候可能需要设定某些变量是参与训练的,这时候就需要查看哪些是可训练参数,以确定这些设置是成功的。
pytorch中model.parameters()函数定义如下:
def parameters(self): r"""Returns an iterator over module parameters. This is typically passed to an optimizer. Yields: Parameter: module parameter Example:: >>> for param in model.parameters(): >>> print(type(param.data), param.size()) <class 'torch.FloatTensor'> (20L,) <class 'torch.FloatTensor'> (20L, 1L, 5L, 5L) """ for name, param in self.named_parameters(): yield param
所以,我们可以遍历named_parameters()中的所有的参数,只打印那些param.requires_grad=True的变量。具体实现代码如下所示:
for name, param in model.named_parameters(): if param.requires_grad: print(name)
这样打印出的结果就是模型中所有的可训练参数列表!
以上这篇在pytorch中查看可训练参数的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#yiidian.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。