如何部分比较两个图
问题内容:
例如,以下两个图被认为是完美的部分匹配:
0-1
1-2
2-3
3-0
和
0-1
1-2
这两个被认为是不匹配的
0-1
1-2
2-3
3-0
和
0-1
1-2
2-0
数字不必匹配,只要这些节点之间的关系可以完全匹配即可。
问题答案:
这是子图同构问题:http :
//en.wikipedia.org/wiki/Subgraph_isomorphism_problem
由于Ullmann,本文中提到了一种算法。
乌尔曼算法是深度优先搜索的扩展。深度优先搜索将像这样工作:
def search(graph,subgraph,assignments):
i=len(assignments)
# Make sure that every edge between assigned vertices in the subgraph is also an
# edge in the graph.
for edge in subgraph.edges:
if edge.first<i and edge.second<i:
if not graph.has_edge(assignments[edge.first],assignments[edge.second]):
return False
# If all the vertices in the subgraph are assigned, then we are done.
if i==subgraph.n_vertices:
return True
# Otherwise, go through all the possible assignments for the next vertex of
# the subgraph and try it.
for j in possible_assignments[i]:
if j not in assignments:
assignments.append(j)
if search(graph,subgraph,assignments):
# This worked, so we've found an isomorphism.
return True
assignments.pop()
def find_isomorphism(graph,subgraph):
assignments=[]
if search(graph,subgraph,assignments):
return assignments
return None
对于基本算法,possible_assignments[i] = range(0,graph.n_vertices)
。也就是说,所有顶点都是可能的。
Ullmann通过缩小可能性来扩展此基本算法:
def update_possible_assignments(graph,subgraph,possible_assignments):
any_changes=True
while any_changes:
any_changes = False
for i in range(0,len(subgraph.n_vertices)):
for j in possible_assignments[i]:
for x in subgraph.adjacencies(i):
match=False
for y in range(0,len(graph.n_vertices)):
if y in possible_assignments[x] and graph.has_edge(j,y):
match=True
if not match:
possible_assignments[i].remove(j)
any_changes = True
这个想法是,如果子图中的节点i可能与图中的节点j相匹配,那么对于子图中与节点i相邻的每个节点x,必须找到与节点j相邻的节点y。在图中。这个过程的帮助比最初显而易见的要多,因为每次我们消除一个可能的分配时,这可能会导致其他可能的分配被消除,因为它们是相互依赖的。
最终的算法是:
def search(graph,subgraph,assignments,possible_assignments):
update_possible_assignments(graph,subgraph,possible_assignments)
i=len(assignments)
# Make sure that every edge between assigned vertices in the subgraph is also an
# edge in the graph.
for edge in subgraph.edges:
if edge.first<i and edge.second<i:
if not graph.has_edge(assignments[edge.first],assignments[edge.second]):
return False
# If all the vertices in the subgraph are assigned, then we are done.
if i==subgraph.n_vertices:
return True
for j in possible_assignments[i]:
if j not in assignments:
assignments.append(j)
# Create a new set of possible assignments, where graph node j is the only
# possibility for the assignment of subgraph node i.
new_possible_assignments = deep_copy(possible_assignments)
new_possible_assignments[i] = [j]
if search(graph,subgraph,assignments,new_possible_assignments):
return True
assignments.pop()
possible_assignments[i].remove(j)
update_possible_assignments(graph,subgraph,possible_assignments)
def find_isomorphism(graph,subgraph):
assignments=[]
possible_assignments = [[True]*graph.n_vertices for i in range(subgraph.n_vertices)]
if search(graph,subgraph,assignments,possible_assignments):
return assignments
return None