数组的最小和分区
问题内容:
问题陈述:
给定一个数组,任务是将其分为两组S1和S2,以使它们的和之间的绝对差最小。
采样输入 ,
[1,6,5,11]
=> 1
。2个子集为{1,5,6}
和{11}
,总和为12
和11
。因此答案是1
。
[36,7,46,40]
=> 23
。2个子集为{7,46}
和{36,40}
,总和为53
和76
。因此答案是23
。
约束条件
1 <=数组大小<= 50
1 <= a [i] <= 50
我的努力:
int someFunction(int n, int *arr) {
qsort(arr, n, sizeof(int), compare);// sorted it for simplicity
int i, j;
int dp[55][3000]; // sum of the array won't go beyond 3000 and size of array is less than or equal to 50(for the rows)
// initialize
for (i = 0; i < 55; ++i) {
for (j = 0; j < 3000; ++j)
dp[i][j] = 0;
}
int sum = 0;
for (i = 0; i < n; ++i)
sum += arr[i];
for (i = 0; i < n; ++i) {
for (j = 0; j <= sum; ++j) {
dp[i + 1][j + 1] = max(dp[i + 1][j], dp[i][j + 1]);
if (j >= arr[i])
dp[i + 1][j + 1] = max(dp[i + 1][j + 1], arr[i] + dp[i][j + 1 - arr[i]]);
}
}
for (i = 0; i < n; ++i) {
for (j = 0; j <= sum; ++j)
printf("%d ", dp[i + 1][j + 1]);
printf("\n");
}
return 0;// irrelevant for now as I am yet to understand what to do next to get the minimum.
}
输出值
假设对于input [1,5,6,11]
,我得到的dp
数组输出如下。
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
0 1 1 1 1 5 6 7 7 7 7 11 12 12 12 12 12 12 12 12 12 12 12 12
0 1 1 1 1 5 6 7 7 7 7 11 12 12 12 12 16 17 18 18 18 18 22 23
现在,如何 确定 2个子集以获得最小值?
PS-我已经看过此链接,但是对于像我这样的DP初学者来说,解释还不够好。
问题答案:
你必须解决subset sum
问题SumValue = OverallSum / 2
请注意,您不需要解决任何优化问题(如max
在代码中使用操作所揭示的)。
只需A
用可能的总和填充大小为(SumValue +
1)的线性表(1D数组),获得最接近最后一个单元格非零结果(向后扫描A)的wint索引,M
并将最终结果计算为 abs(OverallSum - M - M)
。
首先,将第0个条目设置为1。然后从头到尾对每个源数组项D[i]
扫描数组A
:
A[0] = 1;
for (i = 0; i < D.Length(); i++)
{
for (j = SumValue; j >= D[i]; j--)
{
if (A[j - D[i]] == 1)
// we can compose sum j from D[i] and previously made sum
A[j] = 1;
}
}
例如,D = [1,6,5,11]
您拥有SumValue = 12
,制作数组A[13]
并计算可能的总和
A array after filling: [0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1]
工作的Python代码:
def besthalf(d):
s = sum(d)
half = s // 2
a = [1] + [0] * half
for v in d:
for j in range(half, v - 1, -1):
if (a[j -v] == 1):
a[j] = 1
for j in range(half, 0, -1):
if (a[j] == 1):
m = j
break
return(s - 2 * m)
print(besthalf([1,5,6,11]))
print(besthalf([1,1,1,50]))
>>1
>>47