熊猫日期列减法
问题内容:
我有一个像这样的熊猫数据框。
created_time reached_time
2016-01-02 12:57:44 14:20:22
2016-01-02 12:57:44 13:01:38
2016-01-03 10:38:51 12:24:07
2016-01-03 10:38:51 12:32:11
2016-01-03 10:38:52 12:23:20
2016-01-03 10:38:52 12:51:34
2016-01-03 10:38:52 12:53:33
2016-01-03 10:38:52 13:04:08
2016-01-03 10:38:52 13:13:40
我想减去这两个日期列,并希望得到 time
我正在python中跟随
speed['created_time'].dt.time - speed['reached_time']
但这给了我以下错误
TypeError: ufunc subtract cannot use operands with types dtype('O') and dtype('<m8[ns]')
的数据类型created_time
是object
与数据类型reached_type
IStimedelta64[ns]
问题答案:
您可以下拉到NumPy数组并在那里执行datetime /
timedelta算术
。首先,创建一个dtype日期数组datetime64[D]
:
dates = speed['created_time'].values.astype('datetime64[D]')
然后,您有两个选择:可以转换reached_time
为日期,并从日期中减去日期:
speed['reached_date'] = dates + speed['reached_time'].values
speed['diff'] = speed['created_time'] - speed['reached_date']
或者您可以转换created_time
为timedeltas,并从timedeltas中减去timedeltas:
speed['created_delta'] = speed['created_time'].values - dates
speed['diff'] = speed['created_delta'] - speed['reached_time']
import pandas as pd
speed = pd.DataFrame(
{'created_time':
['2016-01-02 12:57:44', '2016-01-02 12:57:44', '2016-01-03 10:38:51',
'2016-01-03 10:38:51', '2016-01-03 10:38:52', '2016-01-03 10:38:52',
'2016-01-03 10:38:52', '2016-01-03 10:38:52', '2016-01-03 10:38:52'],
'reached_time':
['14:20:22', '13:01:38', '12:24:07', '12:32:11', '12:23:20',
'12:51:34', '12:53:33', '13:04:08', '13:13:40']})
speed['reached_time'] = pd.to_timedelta(speed['reached_time'])
speed['created_time'] = pd.to_datetime(speed['created_time'])
dates = speed['created_time'].values.astype('datetime64[D]')
speed['reached_date'] = dates + speed['reached_time'].values
speed['diff'] = speed['created_time'] - speed['reached_date']
# alternatively
# speed['created_delta'] = speed['created_time'].values - dates
# speed['diff'] = speed['created_delta'] - speed['reached_time']
print(speed)
产量
created_time reached_time reached_date diff
0 2016-01-02 12:57:44 14:20:22 2016-01-02 14:20:22 -1 days +22:37:22
1 2016-01-02 12:57:44 13:01:38 2016-01-02 13:01:38 -1 days +23:56:06
2 2016-01-03 10:38:51 12:24:07 2016-01-03 12:24:07 -1 days +22:14:44
3 2016-01-03 10:38:51 12:32:11 2016-01-03 12:32:11 -1 days +22:06:40
4 2016-01-03 10:38:52 12:23:20 2016-01-03 12:23:20 -1 days +22:15:32
5 2016-01-03 10:38:52 12:51:34 2016-01-03 12:51:34 -1 days +21:47:18
6 2016-01-03 10:38:52 12:53:33 2016-01-03 12:53:33 -1 days +21:45:19
7 2016-01-03 10:38:52 13:04:08 2016-01-03 13:04:08 -1 days +21:34:44
8 2016-01-03 10:38:52 13:13:40 2016-01-03 13:13:40 -1 days +21:25:12
使用HRYR的改进,您可以进行计算而无需下拉到NumPy数组(即,无需访问.values
):
dates = speed['created_time'].dt.normalize()
speed['reached_date'] = dates + speed['reached_time']
speed['diff'] = speed['created_time'] - speed['reached_date']