熊猫日期列减法


问题内容

我有一个像这样的熊猫数据框。

       created_time  reached_time
2016-01-02 12:57:44      14:20:22
2016-01-02 12:57:44      13:01:38
2016-01-03 10:38:51      12:24:07
2016-01-03 10:38:51      12:32:11
2016-01-03 10:38:52      12:23:20
2016-01-03 10:38:52      12:51:34
2016-01-03 10:38:52      12:53:33
2016-01-03 10:38:52      13:04:08
2016-01-03 10:38:52      13:13:40

我想减去这两个日期列,并希望得到 time

我正在python中跟随

speed['created_time'].dt.time - speed['reached_time']

但这给了我以下错误

TypeError: ufunc subtract cannot use operands with types dtype('O') and dtype('<m8[ns]')

的数据类型created_timeobject与数据类型reached_typeIStimedelta64[ns]


问题答案:

您可以下拉到NumPy数组并在那里执行datetime /
timedelta算术
。首先,创建一个dtype日期数组datetime64[D]

dates = speed['created_time'].values.astype('datetime64[D]')

然后,您有两个选择:可以转换reached_time为日期,并从日期中减去日期:

speed['reached_date'] = dates + speed['reached_time'].values
speed['diff'] = speed['created_time'] - speed['reached_date']

或者您可以转换created_time为timedeltas,并从timedeltas中减去timedeltas:

speed['created_delta'] = speed['created_time'].values - dates
speed['diff'] = speed['created_delta'] - speed['reached_time']

import pandas as pd

speed = pd.DataFrame(
    {'created_time': 
     ['2016-01-02 12:57:44', '2016-01-02 12:57:44', '2016-01-03 10:38:51',
      '2016-01-03 10:38:51', '2016-01-03 10:38:52', '2016-01-03 10:38:52',
      '2016-01-03 10:38:52', '2016-01-03 10:38:52', '2016-01-03 10:38:52'],
     'reached_time': 
     ['14:20:22', '13:01:38', '12:24:07', '12:32:11', '12:23:20', 
      '12:51:34', '12:53:33', '13:04:08', '13:13:40']})
speed['reached_time'] = pd.to_timedelta(speed['reached_time'])
speed['created_time'] = pd.to_datetime(speed['created_time'])

dates = speed['created_time'].values.astype('datetime64[D]')

speed['reached_date'] = dates + speed['reached_time'].values
speed['diff'] = speed['created_time'] - speed['reached_date']

# alternatively
# speed['created_delta'] = speed['created_time'].values - dates
# speed['diff'] = speed['created_delta'] - speed['reached_time']

print(speed)

产量

         created_time  reached_time        reached_date              diff
0 2016-01-02 12:57:44      14:20:22 2016-01-02 14:20:22 -1 days +22:37:22
1 2016-01-02 12:57:44      13:01:38 2016-01-02 13:01:38 -1 days +23:56:06
2 2016-01-03 10:38:51      12:24:07 2016-01-03 12:24:07 -1 days +22:14:44
3 2016-01-03 10:38:51      12:32:11 2016-01-03 12:32:11 -1 days +22:06:40
4 2016-01-03 10:38:52      12:23:20 2016-01-03 12:23:20 -1 days +22:15:32
5 2016-01-03 10:38:52      12:51:34 2016-01-03 12:51:34 -1 days +21:47:18
6 2016-01-03 10:38:52      12:53:33 2016-01-03 12:53:33 -1 days +21:45:19
7 2016-01-03 10:38:52      13:04:08 2016-01-03 13:04:08 -1 days +21:34:44
8 2016-01-03 10:38:52      13:13:40 2016-01-03 13:13:40 -1 days +21:25:12

使用HRYR的改进,您可以进行计算而无需下拉到NumPy数组(即,无需访问.values):

dates = speed['created_time'].dt.normalize()
speed['reached_date'] = dates + speed['reached_time']
speed['diff'] = speed['created_time'] - speed['reached_date']