如何在TensorFlow中使用批处理规范化?
问题内容:
我想在TensorFlow中使用 批处理规范化 。我在中找到了相关的C
++源代码core/ops/nn_ops.cc
。但是,我没有在tensorflow.org上找到它的文档。
BN在MLP和CNN中具有不同的语义,因此我不确定此BN的确切作用。
我也没有找到任何一种方法MovingMoments
。
问题答案:
2016年7月更新 在TensorFlow中使用批处理规范化的最简单方法是通过contrib /
layers
,tflearn或slim中提供的高级接口。
如果您想自己动手,则可以使用以前的答案 :自发布以来,此文档的字符串已得到改进-
请参阅master分支中的docs注释,而不是找到的注释。它特别说明了它是的输出tf.nn.moments
。
您可以在batch_norm测试代码中看到一个非常简单的示例。对于更真实的使用示例,我将其包含在帮助器类下面,并使用了我为自己使用而写的注释(不提供保修!):
"""A helper class for managing batch normalization state.
This class is designed to simplify adding batch normalization
(http://arxiv.org/pdf/1502.03167v3.pdf) to your model by
managing the state variables associated with it.
Important use note: The function get_assigner() returns
an op that must be executed to save the updated state.
A suggested way to do this is to make execution of the
model optimizer force it, e.g., by:
update_assignments = tf.group(bn1.get_assigner(),
bn2.get_assigner())
with tf.control_dependencies([optimizer]):
optimizer = tf.group(update_assignments)
"""
import tensorflow as tf
class ConvolutionalBatchNormalizer(object):
"""Helper class that groups the normalization logic and variables.
Use:
ewma = tf.train.ExponentialMovingAverage(decay=0.99)
bn = ConvolutionalBatchNormalizer(depth, 0.001, ewma, True)
update_assignments = bn.get_assigner()
x = bn.normalize(y, train=training?)
(the output x will be batch-normalized).
"""
def __init__(self, depth, epsilon, ewma_trainer, scale_after_norm):
self.mean = tf.Variable(tf.constant(0.0, shape=[depth]),
trainable=False)
self.variance = tf.Variable(tf.constant(1.0, shape=[depth]),
trainable=False)
self.beta = tf.Variable(tf.constant(0.0, shape=[depth]))
self.gamma = tf.Variable(tf.constant(1.0, shape=[depth]))
self.ewma_trainer = ewma_trainer
self.epsilon = epsilon
self.scale_after_norm = scale_after_norm
def get_assigner(self):
"""Returns an EWMA apply op that must be invoked after optimization."""
return self.ewma_trainer.apply([self.mean, self.variance])
def normalize(self, x, train=True):
"""Returns a batch-normalized version of x."""
if train:
mean, variance = tf.nn.moments(x, [0, 1, 2])
assign_mean = self.mean.assign(mean)
assign_variance = self.variance.assign(variance)
with tf.control_dependencies([assign_mean, assign_variance]):
return tf.nn.batch_norm_with_global_normalization(
x, mean, variance, self.beta, self.gamma,
self.epsilon, self.scale_after_norm)
else:
mean = self.ewma_trainer.average(self.mean)
variance = self.ewma_trainer.average(self.variance)
local_beta = tf.identity(self.beta)
local_gamma = tf.identity(self.gamma)
return tf.nn.batch_norm_with_global_normalization(
x, mean, variance, local_beta, local_gamma,
self.epsilon, self.scale_after_norm)
请注意,我ConvolutionalBatchNormalizer
之所以称其为a是因为它tf.nn.moments
在轴0、1和2上固定了使用sum的用途,而对于非卷积用途,您可能只需要轴0。
如果您使用它,反馈表示赞赏。