您必须使用dtype float输入占位符张量'占位符'的值


问题内容

我是tensorflow的新手,我真的不知道如何解决该问题。

代码如下:

  1. 向火车提供值:

    sess.run(train_op, feed_dict={images: e, labels: l, keep_prob_fc2: 0.5})
    
  2. 使用CNN中的值:

    x = tf.placeholder(tf.float32, [None, 10 * 1024])
    

然后有错误

InvalidArgumentError (see above for traceback): You must feed a value

for placeholder tensor ‘Placeholder’ with dtype float
[[Node: Placeholder = Placeholderdtype=DT_FLOAT, shape=[],
_device=”/job:localhost/replica:0/task:0/gpu:0”
]]

我使用打印输出值类型print(e.dtype),结果是float32e.shape:(10, 32, 32, 1)

我真的不知道为什么会发生此错误。


代码格式

第一:

 define the CNN model 
       "image = tf.placeholder(tf.float32, [FLAGS.batch_size, 32,32,1])" is here

第二:

 loss funtion and train_op is here
       "label = tf.placeholder(tf.float32, [None, FLAGS.batch_size])" is here

第三是会议:

images, labels = getShuffleimage()#here will get shuffle data
num_examples = 0
init = tf.initialize_local_variables()

with tf.Session() as sess:
    # Start populating the filename queue.
    sess.run(init)
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord=coord, sess=sess)

    try:
        step = 0
        while not coord.should_stop():
            start_time = time.time()
            image, label = sess.run([images, labels])#get shuffle images
            print(image.shape)
            print(image.dtype)
            sess.run(train_op, feed_dict={image: image, label: label , keep_prob_fc2: 0.5})
            duration = time.time() - start_time

    except tf.errors.OutOfRangeError:
        print('Done training after reading all data')
    finally:
        # When done, ask the threads to stop.
        coord.request_stop()

        # Wait for threads to finish.
        coord.join(threads)
        sess.close()

问题答案:

一些问题

第一
,为什么你使用sess = tf.InteractiveSession(),并with tf.Session() as sess:在同一时间,只是好奇

第二你有什么占位符的名称ximages
如果name是x{images: x_data...}则不会提供x_datax,它会覆盖(?)images
我认为feed_dict应该是{x: x_data...}

如果name是imagesimages程序中是否有两个,placeholder并且shuffle data,请尝试修改变量的名称