数据框成numpy数组,逗号分隔
问题内容:
场景
我已经将一个csv(\ t分隔)读入一个Dataframe中,现在需要以numpy数组格式进行聚类而不更改类型
问题
到目前为止,根据尝试的引用(如下),我未能按要求获得输出。我尝试获取的两列值在int64 / float64中,如下所示
uid iid rat
0 196 242 3.000000
1 186 302 3.000000
2 22 377 1.000000
目前,我仅对 iid 和 rat 感兴趣,并将其传递给Kmeans.fit()方法,而在EPSILON中也是如此。我需要以下格式
预期格式
[[242, 3.000000],
[302, 3.000000],
[22, 1.000000]]
尝试失败
X = values[:, 1:2]
Y = values[:, 2:3]
someArray = np.array([X,Y])
print someArray
并不会在执行时告别
[[[ 2.42000000e+02]
[ 3.02000000e+02]
[ 3.77000000e+02]
...,
[ 1.35200000e+03]
[ 1.62600000e+03]
[ 1.65900000e+03]]
[[ 3.00000000e+00]
[ 3.00000000e+00]
[ 1.00000000e+00]
...,
[ 1.00000000e+00]
[ 1.00000000e+00]
[ 1.00000000e+00]]]
迄今为止无用的参考文献
编辑1
尝试np_df = np.genfromtxt('AllData.csv', delimiter='\t', unpack=True)
并得到了这个
[[ nan 1.96000000e+02 1.86000000e+02 ..., 4.79000000e+02
4.79000000e+02 4.79000000e+02]
[ nan 2.42000000e+02 3.02000000e+02 ..., 1.36000000e+03
1.39400000e+03 1.65200000e+03]
[ nan 3.00000000e+00 3.00000000e+00 ..., 2.00000000e+00
1.92803605e+00 1.00000000e+00]]
问题答案:
看来你需要read_csv
为DataFrame
第一与过滤器仅第二和第三列,然后再转换为numpy的阵列由values
:进口大熊猫作为PD从pandas.compat进口StringIO的sklearn.cluster进口KMEANS
temp=u"""col,iid,rat
4,1,0
5,2,4
6,3,3
7,4,1"""
#after testing replace 'StringIO(temp)' to 'filename.csv'
df = pd.read_csv(StringIO(temp), usecols = [1,2])
print (df)
iid rat
0 1 0
1 2 4
2 3 3
3 4 1
X = df.values
print (X)
[[1 0]
[2 4]
[3 3]
[4 1]]
kmeans = KMeans(n_clusters=2)
a = kmeans.fit(X)
print (a)
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
n_clusters=2, n_init=10, n_jobs=1, precompute_distances='auto',
random_state=None, tol=0.0001, verbose=0)